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High-temperature representation of anisotropic rotator, XY 
and Heisenberg models for dimensions D 3 2T 
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Institut fur Theoretische Physik, Freie Universitat Berlin, 1000 Berlin 33, Germany 

Received 18 October 1978 

Abstract. We establish a relation between discrete excitation models at low temperature 
and the anisotropic rotator, XY and Heisenberg models at high temperature for dimensions 
D 3 2. The correlation functions of these models are shown to decay exponentially for 
short-range interactions. A qualitative discussion of the phase transitions is given. 

1. Introduction 

In a recent Letter (Holz 1978a) a discrete excitation model was introduced with a finite 
number of degrees of freedom per lattice site which can be used for a study of the 
high-temperature properties of the planar rotator model in dimensions D 2 2. In the 
following a generalisation of this discrete excitation model will be presented which also 
allows the calculation of the high-temperature properties of the Ising-like models listed 
in the title of the paper. The procedure is based on the extension of the discrete 
excitation model introduced by Knops (1977) for D = 2 to arbitrary dimensions and the 
notion of monopoles associated with anisotropy fields. 

The concept of monopoles used here was first introduced into the problem by Villain 
(1975) and independently developed by JosC et a1 (19771, and has recently been 
generalised by Kadanoff (1978). 

The present procedure makes use of an approximate duality between the low- 
temperature properties of the discrete excitation models and the high-temperature 
properties of the Ising-like models. The degree of accuracy of the mapping between the 
properties of the two classes of models improves the more extreme the temperatures 
are. It is therefore not possible to give a completely satisfactory discussion of the phase 
transition (PT) occurring in the Ising-like models in the context of the present method, 
although that would be highly desirable. 

The paper is presented as follows. In 5 2 the basic formalism is developed. The 
correlation functions of some anisotropic rotator models are given in 0 3. The extension 
of the formalism to the XY and Heisenberg models is developed in 09 4 and 5 
respectively. In 0 6 the phase transitions which can occur in the discrete excitation 
models are discussed qualitatively with a look at those occurring in the Ising-like 
models. 

i Work supported by Deutsche Forschungsgemeinschaft under SFB161. 
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2. Basic formalism 

We consider a Hamiltonian of the form 

H D E = i  1 JDEn~i,j, . . .)+CJbEn~’ (1) 
( i d  . . .) i‘  

on a Ddimensional simple hypercubic lattice with N lattice sites. Here i, j ,  . . . label 
lattice sites on the simple Ddimensional hypercubic lattice, and i’ labels lattice sites on 
the dual lattice. .TIDE and J ~ E  represent the isotropic and anisotropic coupling 
constants respectively. The symbol (i, j ,  . . .) contains 2D-’ indices and represents the 
(D - 1)-dimensional hypercubic face formed by the lattice sites il, iz, . . . , i p - 1 ,  where 
ii, ij+l are nearest neighbours and i p - ~ + ~  = il. Each hypercubic face appears in 
equation (1) twice, once oriented with an even permutation (Peil, iz, . . . , i 2 D - 1 )  and 
once oriented with an odd permutation (Poil, i z ,  . . . , ~ Z D - 1 ) .  In the following this will be 
referred to as positive and negative orientation respectively. Furthermore we require 

The second term of equation (1) is referred to the dual lattice, and here we require 

nip = 0 ,  * p .  (4) 
Because each lattice site i’ of the dual lattice is surrounded by 2 0  ( D  - 1)-dimensional 
hypercubic faces we can formulate the conservation law 

for each dual lattice site i’. Here nf;.j,. . .) is given by 

n L , .  . .) = n ( P c ( 0 ) .  t l . i Z , .  . . . $ - I )  ( 6 )  
for the 2 0  hypercubic faces surrounding the dual site i’, otherwise it vanishes. 
Furthermore, for a given site i’ the orientation of each surrounding face is fixed once for 
always, so that for neighbouring sites i’, j ’  the orientation of the hypercubic face shared 
by them appears in equation (6) for i‘ and j ’  with opposite signs. The problem defined 
by equations (1)-(6) will be referred to in the following as the discrete excitation model. 

Using the integral representation for equation (3, 

where the right-hand side denotes the Kronecker symbol, the partition function for 
the problem can be written in the form 
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are effective potentials, and 
excitation model. For 

indicates the inverse temperature of the discrete 

s D E J ~ L  >> 1 (11) 

equations (9) and (10) can be Taylor-expanded and we obtain approximately 

z p , ~  - 2,” = (2r)-N fi ddi, exP(-PRHR({4ip))). (12) 
i ’ = l  

Here the following abbreviations have been introduced: 

HR({c$~,}) -Jk cOS(#i*-4f)-Jk C COS p4i0, (13a) 

P R J ~  eXp(-/%x&E 1, (136) 

P R J ~  2 exP(-PDEJf)E 1. (13c) 

(i‘.i‘) i’ 

It follows from equations (1 1)-(13c) that the low-temperature partition function Z p , ~  of 
the discrete excitation model maps onto the high-temperature partition function 2: of 
the anisotropic rotator model, equation (13a). Here J k ,  Jk represent the coupling 
constants of the isotropic and anisotropic parts of the rotator model, and PR denotes its 
inverse temperature. Raising the second subscript of the partition function Zp,x of a 
discrete excitation model is always used in the following to indicate the partition 
function 2: of the corresponding Ising-like model. 

Before we proceed we would like to point out that the present formalism can be 
generalised in two ways. Firstly, anisotropic models where the second term of equation 
(13a) is substituted by X z = l - J k ( a ) X i g  cos a& can be obtained as follows. We 
substitute the second term of equation (1) by 8E=1 X i ,  J f ) E  ( a ) n : , ( a )  andequation (4)  by 
p equations n i ( a )  = 0, *a. This leads to P R J ~  (a) = 2 exp(+DEJf)E (a)). Secondly, 
rotator models with long-range interaction can be obtained, where the first term of 
equation (130) is substituted by -Xi, ,? J k  (li‘-j’l) cos(rbi~-4~) and where li’-j’\ 
denotes the distance between the pair of sites i ’, j ’ .  In order to achieve this we substitute 
the first term of equation (1) by$ Zi,,it JbE (li‘ -j’l)n?,,f, equation (2) by ni,.i, = - n f , i ,  and 
equation ( 5 )  by nit.i- +nil = 0. This leads to 

P R J ~  ( l i ’ - j ’ l )  = eXp(-PDEJbE (li’-j’l)). (14) 

It follows immediately that interaction constants JbE (Ii’ - j ’ \ )  which increase with 
distance l i ’ - j ’ /  have to be used in order to satisfy the condition P D E J ~ E  (1i’- j ‘ l )  >> 1 on 
which equation (14) is based. This leads then to coupling constants J k  (li’-j‘l) which 
decrease with distance li’-j’l as is usually required. Let us point out that the present 
formalism could have been used immediately at the beginning of the paper and would 
have made the introduction of a dual lattice redundant. However, in order to explain 
some different aspects of this problem in 0 6, this more intricate notation has been 
introduced. 

We consider next the partition ftlnction of the discrete excitation model. Equations 
(2) and (3) imply that each configuration can be specified by associating with each 
hypercubic face either no arrow or an arrow of unit length piercing it. The beginning 
and end of the arrow are fixed to the two neighbouring dual lattice sites which share the 
hypercubic face. Equations (4) and (5) then imply that on the dual lattice an equal 
number of sources and sinks is present where p arrows emanate and p arrows terminate 
respectively. Kirchhoff’s law has to be satisfied everywhere. Accordingly all lines are 
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oriented and either closed or connected to the sources and sinks. It follows now that 
p L 2 0  has to hold, and no more than 0 oriented lines can cross at a dual lattice point. 

The partition function for p = 0 is given by 

where CL is a collection of oriented and closed loops on the dual lattice of total length 
cL =$dsL, and {CL} denotes all possible loop collections. It should be observed that 
$dsL denotes here the contour integral not only over one loop but a collection of loops. 
For JbE ( p )  > 0 we obtain 

(16) 

Here [GIp = (C;, Cf, . . . , Cb) is a collection of p-fold lines, where each constituent of 
one p-fold line has the same orientation with respect to their common initial or end 
point. n ( [ C J p )  gives the number of p-fold lines or the number of monopole pairs of 
strength p .  { [CS] , }  denotes all possible collections of p-fold lines. 

Let us point out that for long-range interaction models we can proceed in a similar 
way to the above, the only difference being that now the arrows will connect arbitrary 
pairs of sites on the dual lattice. Because J b ~ ( l i ’ - j ‘ ( )  increases with distance li’-j’l, a 
well-defined problem still exists. 

3. Correlation function of rotator models 

Consider now the problem that at sites 0’ and rl there is a source and a sink respectively 
of strength q, i.e. that 

for i‘ = 1,. . . , N holds instead of equation ( 5 ) .  Under the condition of equation (11) 
the partition function of the problem is then 

Z p , R ( o ’ ,  r ’ )  - 2; (o’, r ’ )  

= ( 2 r ) - N  fi 6’” d4,.  exp[iq(dw- 4r,)I eXp(-PRHR({di,))). (17) 
i ’ = l  

Accordingly we obtain 

( e d h  (40, - 4 r ’ ) l ) p  = (COS 4(4o, - 4 r ’ ) ) p  - z p , ~ ( O ‘ ,  r ‘ ) / Z p , ~ ,  (18) 

where the subscript p reminds us that a p-anisotropy is present. It follows from 
equation ( 5 ‘ )  that q L p + 2 0  is necessary in order that Zp,R(O’, r ’ )  should not vanish. In 
the following q = 1 will be considered mainly. Higher-order correlation functions can 
be constructed in the same manner by adding further source and sink terms to the 
right-hand side of equation ( 5 ’ ) .  
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We consider next a number of special cases. 
( a )  Isotropic rotator model, p = 0. 

where Cs(O’, r‘)  denotes an oriented line conformation with ends attached to 0’ and r‘ 
and total length cs(O’, r’)  = & ds, and {Cs(O’, r’)}  denotes all possible line conformations, 
each, however, with the same orientation. The coupling constant of the rotator model is 
given by equation (13b). It follows from equation (15) that in the limit P D E J L E  >> 1 the 
saddle point of ZO,R consists of a dilute gas of small loops. Similarly the saddle point of 
Zo.R(O‘, r’) consists of a dilute gas of small loops and an essentially straight line 
connecting 0‘ and r’. Accordingly we obtain for 10‘- r’l >> 1 

(20) (cos(4ot - 4 r ’ ) ) o  - exp(-K 10’ - r‘l), 

where K - PDEJLE = -ln(PRJk ) is the inverse correlation length. 

(exp[i(4,. - 4r’)l)l 

( b )  Rotator model in the presence of a magnetic field, p = 1. 

The presence of the magnetic field produces a gas of monopoles of unit strength which 
can now be connected to the source and sink at 0’ and r’.  This generates the line 
conformations Cs(O‘) and Cs(r’) ,  where Cs(O’) starts at 0‘ and ends at an arbitrary point, 
and where Cs(r’ )  starts at an arbitrary point and ends at r’. 

In the limit P D E J ~ E  >>1 and 1O’-r‘l>> 1 the first term of equation (21) shows 
exponential decay and therefore vanishes for 10’ - r’l+ CO. The second term of equation 
(21), however, gives a finite contribution. This can be seen as follows. To each 
configuration which appears in Z1,R we add a source term at 0’ and an additional 
monopole of negative unit charge at an arbitrary point, and connect them by the 
oriented line Cs(O’). The same operation is performed simultaneously for the sink term. 
If the line conformations Cs(0’) and Cs(r’ )  are now constructed by means of a random 
walk process, we obtain the following estimate: 

Physically this result means that the gas of monopoles generated by the magnetic field 
screens the long-range interaction in the system, because it short-cuts the field lines 
between test charges, i.e. the source and sink of strength q = 1. 
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(c) Uniaxial anisotropy, p = 2. 
In this case the source and sink at the sites 0’ and r‘ respectively cannot be screened by 
the monopoles of strength p = ~ k 2  as was the case for p = k l .  In fact, because the line 
conformations {[CS]~} are two-fold and q = 1, it follows immediately from equation (5 ’ )  
that all terms of (exp[i(40, - 4r,)])2 contain one oriented line from 0’ to r ‘ .  This implies 
exponential decay of the correlations. Similarly the correlation function (e~p[2i(q5~, - 
c$,,)])~ will have a term analogous to the second term of (exp[i(4w - q5r,)])1 and therefore 
will assume a finite value for 10’ - r’l + 00. In this case the monopole gas is able to screen 
the long-range interaction between the test charges of strength q = *2. Finally, we 
point out that, if in addition to a p-anisotropy a magnetic field is present with an 
orientation along one of the minima of the anisotropy field, then long-range inter- 
actions are screened for test charges with 4 = *l. 

In principle the case of long-range interactions can be treated in a completely 
analogous fashion. In this case we define 

PDEJDE ( i f ,  j ’ )  = PDEJLE + a  In li’-j’l, i‘ # i f ,  (23) 

and use of equation (14) leads to 

P R J k  (li’-j’\) = [exp(-@DEJbE)I/r“, (24) 

where a > 0 has to be used. For PDEJLE >> 1 and 10’ - r’l>> 1 we obtain the estimate 

(cos(d0- 4 r ’ ) ) O  - [exp(-PDEJbE )]/rue (25) 

Accordingly, a power-law decay is the most one can obtain for rotator models with 
long-range interaction. 

Let us point out that equation (23) implies that the discrete excitation model used is 
actually a formal device because the coupling constants depend on the temperature. 
The same applies to the discrete excitation models introduced in the following sections. 

4. Correlation functions of the XY model 

In order to obtain the XY model, the coupling constants of the discrete excitation model 
are substituted as follows: 

where i’, j ’  refer to neighbouring lattice sites on the dual lattice which are separated by 
their common hypercubic face (i, j ,  . . J. The function f ( x )  should satisfy 0 a f ( x )  < 1. In 
addition, the measure of the partition function of the discrete excitation model is 
supplemented by the integral operator 

Using the same routine as before we obtain instead of equation (12) 
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Here the following abbreviations have been introduced: 

HxY({di,} ,  {eiJ> 

= -JLy 1 sin Bi‘ sin Bj, cos(& - q 5 j t )  - J k y  f(sin e,,) cos p&, (28a) 

BXYJLY exp(-b&E 1, (28b) 

B X Y J ~ Y  2 exp(-BDdbE 1. ( 2 8 ~ )  

(i’i‘) i‘ 

For the sake of simplicity we consider in the following only the case f(sin Bit) 0. The 
partition function of the discrete excitation model corresponding to equation (27) can 
now be written in the form 

and this leads approximately to 

ZO.XY - ($IC“ exp(-pDEJbE$ dSd. (29b) 
{CJ  CL 

In equation (29a) i’E CL picks up all points of the contour CL only once. Accordingly 
the intersection points of the lines are counted with their proper multiplicity. Equation 
(29b) applies to a dilute gas of loops where only a small number of crossings of lines 
occurs. Using the notation 

Si, = (S;,, SF, S;,) = (cos & sin ei,, sin 4iP sin Bin, cos eir) 
the correlation functions of the XY model can be constructed in the same fashion as 
earlier using equation (5’) .  We obtain 

(s:s; + sl;s;,> 

- fi f [“dBi,sin Bit n sin2 Bip n sin2 Bi, 
{CJ.{Cs(O’.r‘)] i = 1 0 i‘E CL i‘E Cs(0.r’) 

Here i ’ E  CL and i ’ E  Cs(O‘, r’) means that i’ picks up all points of the corresponding 
contours only once, implying that the intersection points of the contours CL and 
Cs(O’, r’) are counted with their proper multiplicity. For P D E J ~ E  >> 1 we obtain 
approximately from equation (30) 

where use has been made of (s&s;)=O. Furthermore, equation (31), like equation 
(29b), only applies to the case of a dilute gas of loops where only a small number of 
crossings of lines occurs. If such crossings are taken into account properly, then a term 
for the number of crossings n (c) (in which c lines interact and where 1 < c s D holds) 
has to be introduced. A formula similar to equation (31) can then be derived which is 
more intricate, however, and in which some of the ‘2’ factors are substituted by others 
which are also less than one in magnitude. 
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It follows from equation (31) that for 10'- r'/  >> 1 an exponential decay of cor- 

(32) 

where K - PDEJ;)E = -In P X y J h  is the inverse correlation length. The study of the 
anisotropic XY models follows the same line of thought as demonstrated in 0 3 for the 
anisotropic rotator models, and leads qualitatively to the same results. This problem 
will therefore not be pursued further. 

relations is obtained, 
2 IO- r ' ,  (So, . S,,) - (7) exp(-K IO' - r'l), 

5. The Heisenberg model 

For the sake of simplicity we study in this section only the isotropic Heisenberg model. 
Using equation (1) without the second term but supplemented by the term 

-J&E 1 COS el, COS e,., 
( I ' J ' )  

and then proceeding as in 0 4 for the XY model, we obtain for the partition function of 
this discrete excitation model 

For 

exp(-PDEJLE ) = PDEJZDE 
the isotropic Heisenberg model is obtained. The partition function now reads 

.r n 

We introduce next a special colrelation function of the continuous Ising model 
(Griffiths 1969) defined as 

E(CL, Cs(O', r ' ) )  = n 4 N "  
dei9 sin Oi, n sin2 Oi9 

i ' = l  0 i ' E  CL 
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where 

is the partition function of the continuous Ising model. For the isotropic Heisenberg 
model we have in the disordered state ( S & S ; )  = (S&SY,) = (S&S: , ) ;  it is therefore 
possible to construct the correlation function in the same fashion as for the XY model. 
We obtain then straightforwardly 

XE(CL, cs(o’, r ’ ) ) /  1 exp ( -PDEJ~E+ dsL) E(CL, 0). (38) 
(CL) CL 

It follows from equations (36) and (37) that 

0 S E(CL, Cs(O‘, r’))  s 1 (39) 
holds. Accordingly for P D E J ~ E  >> 1 exponential decay of the correlations for 10’- r’l>> 1 
is again obtained. 

Comparison of equations (31) and (38) reveals that the correlation function of the 
Heisenberg model has a more complicated structure than that of the XY model. 
Because the continuous king model which has been introduced has a ferromagnetic 
ground state, ferromagnetic fluctuations which appear as PDEJ&E increases will prevent 
the growth of large loops. This follows from equation (36) where the factors sin2 Bi, 
along the loops assume small values for Bi, - 0, v. This problem will be considered from 
a different point of view in Q 6. 

6. Phase transitions and conclusions 

We consider in this section certain aspects of the phase transitions (PT) which occur in 
the discrete excitation models and their consequences for the rotator models. Although 
it is not known whether the discrete excitation model undergoes a PT, one expects on 
physical grounds that for JLE  = 0 such a PT occurs. Presumably it is connected with the 
infinite extension of loops, and a random walk argument would lead to the estimate 

pCDE~bE s l n ( 2 ~  - 1) (40) 
for the transition temperature. (The exponent 3 in equation (23) of Holz (1978a) is 
wrong.) The partition function in equation (8) can now be written in the form 

from which it follows that for 

~ D E J ~ E  >ln 2 

the saddle points of ZO,R can be classified into sectors in the same way as for the 
ferromagnetic ( J R >  0) rotator model (Holz 1978a). For PDEJDE< In 2 this is no longer 
the case because equation (41) will also exhibit saddle points showing all sorts of 
antiferromagnetic orderings. At P D E J ~ E  = In 2 the excitation energy of these saddle 
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points is infinitely large. One may hope therefore that if the presumed PT in the discrete 
excitation model occurs for PLEJbE >In 2 it may have some features in common with 
the PT occurring in the rotator model. An improved situation arises, of course, for 
P‘,EJ~E >>In 2. 

The transition temperature Tc of the rotator model can be estimated for D = 2 from 
the divergence of the polarisability of a vortex pair, which leads to kBTc - T J ~ ,  and 
using equation (136) to 

PCDEJ~E -In T. (43) 

For D = 3 a random walk argument (Banks et a1 1977, Holz 1978b) for the infinite 
extension of a vortex loop leads to kBTc - rJR(ln 8 + 2 X 0.5774)/1n 5 ,  and using 
equation (136) to 

PLEJDE - 1 n ( 2 ~ ) .  (44) 

From the arguments leading to equations (40) and (42), and from equations (43) and 
(44), it follows that, if the PT of the discrete excitation model occurs in the interval 

In 2 < P D E J ~ E  s l n ( 2 ~  - I), (45) 

it may have some features in common with the PT occurring in the rotator models. 
For D 2 3 the PT occurring in the discrete excitation model may be continuous, 

because the infinite extension of loops may proceed over random walk processes which 
are hardly modified by ‘excluded volume’ effects. For D = 2 the nature of the PT may 
deviate more from mean field behaviour owing to the increased importance of 
‘excluded volume’ effects. 

Qualitatively this picture may apply to the discrete excitation models constructed 
for the rotator and XY models. For the Heisenberg model one expects no PT to occur 
for D = 2, as explained by Belavin and Polyakov (1975). A tentative explanation within 
the discrete excitation model introduced in § 5 may be that the ferromagnetic fluctua- 
tions produced by the continuous Ising model are able to prevent an infinite loop 
extension for D = 2. As explained at the end of 0 5 a tendency towards such behaviour 
is also present for D 2 2. Accordingly, an additional dimensional argument is necessary 
to explain the occurrence of a PT for D 2 3, and this requires a study of equations 
(33437) .  A qualitative argument, however, may be developed by considering an 
anisotropic Heisenberg model where equation (346) does not apply. Equation (35) still 
holds in this case, and equation (38) without the factor 3 gives the correlation function 
( s ~ x ~  + S ~ ~ S : , ) .  For P D E J ~ E  >> exp(-PDE&E) long-range ordering for the correlation 
function (S$S;,)  may be achieved. From the argument given in § 5 it follows then that 
the density and growth of loops is curtailed, and no infinite extension of loops may 
occur. At the other extreme P D E J ~ E  << exp(-PDEJbE ) an increased density of loops 
prevents long-range ordering for the correlation function (Si,S:,), but infinite extension 
of a loop may occur. This makes it plausible that for an intermediate value of the 
anisotropy, or say the isotropic Heisenberg model, either no PT occurs at all or a PT 

occurs where infinite loop extension and ferromagnetic ordering appear simul- 
taneously. The first case would apply to D = 2 and the second to D 2 3, where a 
symmetry-breaking field would define an ordering direction different from Oig = 0 or T. 
If the symmetry-breaking field is taken along Oi, = 0 or T no infinite loop extension will 
presumably occur. 
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In the presence of a magnetic field one knows (Dunlop and Newman 1975) that the 
rotator models do not undergo a PT. A qualitative argument that the same happens for 
the discrete excitation model follows from the fact that the magnetic field introduces 
pairs of monopoles of unit strength into the system. A growing loop wilI now always be 
unstable against disintegration into open-ended lines decorated by monopoles. This 
will occur once the loop exceeds a certain critical length which depends on the chemical 
potential of the monopoles and the gain in entropy by opening a closed loop. One may 
still expect that the gas of monopoles bound into pairs may undergo a PT into a state of 
unbounded pairs. Because each unbounded pair would produce an infinitely extended 
line connecting it, this process would necessarily be stopped by excluded volume effects. 
This also suggests that for the discrete excitation model in the presence of a magnetic 
field no PT occurs and line extensions remain finite. 

Finally we make a remark with respect to the discrete excitation model introduced in 
0 2. If the right-hand side of equation (3) extends over all positive and negative 
integers, then it can be shown (Chui and Weeks 1976) for D = 2 that a vortex plasma 
arises and for D = 3 that a vortex loop plasma arises (see e.g. Holz 1978a). In general it 
can be expected that (D - 2)-dimensional vortex-like objects arise interacting with a 
Coulomb interaction (1 / rD- ’ ) .  For D = 2 and 3 the introduction of the quantities 
n( i , j . .  .)defined in Q 2 proved rather useful for the problem and presumably also allows in 
arbitrary dimensions the derivation of a partition function for the ( D  - 2)-dimensional 
objects. A discussion of the properties of the system in terms of these objects is, 
however, much more difficult. In particular, in the presence of anisotropy fields 
additional (D - 1)-dimensional objects appear representing domain walls. Further- 
more, the Coulomb interaction between the (D - 2)-dimensional vortex-like objects 
becomes screened. In addition, the (D - 1)-dimensional surfaces bound by the vortex- 
like objects assume a surface energy proportional to the anisotropy strength, and 
develop their own thermodynamic degrees of freedom. It has been shown by Holz 
(1978b) that a discussion of the PT using the vortex-like objects and its disappearance in 
the presence of a magnetic field can be done using dimensional arguments similar to 
those in the present paper. We conclude, however, that the properties of the rotator 
models are easier to study over the corresponding discrete excitation model. Because 
the latter is much easier to handle with a finite number of degrees of freedom as given by 
equation (3), it follows that the model used in this paper is rather attractive. 

It should be pointed out that Muller and Helfrich (1978) have developed a 
high-temperature procedure for the S = $ Heisenberg model which leads to a formula- 
tion in terms of triply counted loops. 
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